Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes

Identifieur interne : 006780 ( Main/Repository ); précédent : 006779; suivant : 006781

Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes

Auteurs : RBID : Pascal:09-0038054

Descripteurs français

English descriptors

Abstract

We present a review of the progress in the field of 2DEG in strained Si/SiGe heterostructures during the past 20 or so years. We highlight the difference in the key challenges in sample preparation between the samples for low-temperature transport studies and those for field-effect transistor (FET) applications. The requirements of low electron density and high electron mobility for low-temperature electron transport are also discussed. High mobility (>300,000 cm2/V s) can be reproducibly achieved recently and low electron sheet density (1.1 ×1011 cm-2) in modulation-doped samples (as opposed to gated) has also been observed. Magnetotransport measurements provide indications of the mobility limiting factors thereby pointing to the plausible directions for further improvements on the strained Si sample quality.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0038054

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes</title>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of California at Los Angeles</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, CA 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J. H. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of California at Los Angeles</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, CA 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Y H" uniqKey="Xie Y">Y. H. Xie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of California at Los Angeles</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, CA 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, T M" uniqKey="Lu T">T. M. Lu</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lai, K" uniqKey="Lai K">K. Lai</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0038054</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0038054 INIST</idno>
<idno type="RBID">Pascal:09-0038054</idno>
<idno type="wicri:Area/Main/Corpus">005D99</idno>
<idno type="wicri:Area/Main/Repository">006780</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic additions</term>
<term>Electron density</term>
<term>Electron gas</term>
<term>Electron mobility</term>
<term>Electron temperature</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Field effect transistors</term>
<term>Ge-Si alloys</term>
<term>Growth mechanism</term>
<term>Heterostructures</term>
<term>High density</term>
<term>Indium additions</term>
<term>Limiting factor</term>
<term>Magnetoresistance</term>
<term>Reviews</term>
<term>Sample preparation</term>
<term>Silicon</term>
<term>Two-dimensional electron gas</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Mécanisme croissance</term>
<term>Article synthèse</term>
<term>Hétérostructure</term>
<term>Préparation échantillon</term>
<term>Transistor effet champ</term>
<term>Densité électron</term>
<term>Densité élevée</term>
<term>Mobilité électron</term>
<term>Température électron</term>
<term>Addition indium</term>
<term>Addition arsenic</term>
<term>Magnétorésistance</term>
<term>Gaz électron 2 dimensions</term>
<term>Silicium</term>
<term>Alliage Ge Si</term>
<term>Facteur limitant</term>
<term>Gaz électron</term>
<term>Si</term>
<term>Ge Si</term>
<term>SiGe</term>
<term>6855A</term>
<term>8530T</term>
<term>7320</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a review of the progress in the field of 2DEG in strained Si/SiGe heterostructures during the past 20 or so years. We highlight the difference in the key challenges in sample preparation between the samples for low-temperature transport studies and those for field-effect transistor (FET) applications. The requirements of low electron density and high electron mobility for low-temperature electron transport are also discussed. High mobility (>300,000 cm
<sup>2</sup>
/V s) can be reproducibly achieved recently and low electron sheet density (1.1 ×10
<sup>11</sup>
cm
<sup>-2</sup>
) in modulation-doped samples (as opposed to gated) has also been observed. Magnetotransport measurements provide indications of the mobility limiting factors thereby pointing to the plausible directions for further improvements on the strained Si sample quality.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>517</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Fifth International Conference on Silicon Epitaxy and Heterostructures (ICSI-5)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LIU (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (J. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIE (Y. H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LU (T. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAI (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DERRIEN (Jacques)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>VINH LE THANH</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KASPER (Erich)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of California at Los Angeles</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>45-49</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000184355950120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0038054</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present a review of the progress in the field of 2DEG in strained Si/SiGe heterostructures during the past 20 or so years. We highlight the difference in the key challenges in sample preparation between the samples for low-temperature transport studies and those for field-effect transistor (FET) applications. The requirements of low electron density and high electron mobility for low-temperature electron transport are also discussed. High mobility (>300,000 cm
<sup>2</sup>
/V s) can be reproducibly achieved recently and low electron sheet density (1.1 ×10
<sup>11</sup>
cm
<sup>-2</sup>
) in modulation-doped samples (as opposed to gated) has also been observed. Magnetotransport measurements provide indications of the mobility limiting factors thereby pointing to the plausible directions for further improvements on the strained Si sample quality.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Préparation échantillon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Sample preparation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité électron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electron density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Température électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electron temperature</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Addition arsenic</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Arsenic additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Magnétorésistance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Magnetoresistance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gaz électron 2 dimensions</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Two-dimensional electron gas</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Alliage Ge Si</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Ge-Si alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Facteur limitant</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Limiting factor</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Factor limitante</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Gaz électron</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electron gas</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ge Si</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>SiGe</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6855A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8530T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>026</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Silicon Epitaxy and Heterostructures (ICSI)</s1>
<s2>5</s2>
<s3>Marseille FRA</s3>
<s4>2007-05-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006780 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006780 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:09-0038054
   |texte=   Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024